Skip to main content

ELK Stack... Not!!! FEK, it is.!!! Fluentd, Elasticsearch & Kibana

If you are here, you probably know what elasticsearch is and at some point, trying to get into the mix. You were searching for the keywords "logging and elasticsearch" or perhaps, "ELK"; and probably ended up here. Well, you might have to take the following section with a pinch of salt, especially the "ELK Stack"  fam.

At least from my experience, working for start-ups teaches oneself, a lot of lessons and one of the vast challenges include minimizing the resource utilization bottlenecks.
On one hand, the logging and real-time application tracking is mandatory; while on the the other hand, there's a bottle neck in the allocated system resource, which is probably an amazon EC2 instance with 4Gigs of RAM.

ELK Stack 101:

Diving in, ELK => Elasticsearch, Logstash and Kibana. Hmm, That doesn't add up; don't you think? Elasticsearch stores the reformed log inputs, Logstash chops up the textual logs and transforms them to facilitate query, derivation of meaningful context, thereby, aiding as an input source to be visualized in Kibana.
Logstash uses grok patterns to chop up the log, doesn't it. So, an essential amount of time needs to be invested in learning how these patterns are different from that of the traditional regular expressions.
But... But, who's gonna ship the logs from the application to Logstash and this shipping needs to be seem-less. Well, There's filebeat provided by elastic co, to ship all those.

So, Is it supposed to be ELFK or perhaps, FLEK stack? (WT*) 
You, be the judge!

Using four applications, singing to each other, what could go wrong?

WARNING: The following infographic may contain horrifying CPU spikes, that some readers might find disturbing.


Well.. Well.. Well.. What do we have here?

Extracting valuable information from logs is more like an excavation, digging deep to excavate the hidden treasures. It can't be at the cost of resource utilization.

Introducing, the FEK Stack (I heard you.. Dirty mind :p)..

Enter Fluentd AKA td-agent, an open source data collection tool written in Ruby (not JAVA!!! Ruby - 1 Java - 0).


The setup is way too easy, that you can be up and running in no time.


Locate to /etc/td-agent/ and replace the existing configuration template (td-agent.conf) with the following configuration.


The parameters are self-explanatory and the keyword: format is where, the regex for log chopping is given. An important think to note is the tag keyword. The value described here, should be used in the <match> segment. This bonding between the source and the mapping happens with the aid of this keyword.

For demonstration purpose, you can use the following snippet of code for random log file generation.

https://github.com/datawrangl3r/logGenerator

The configuration file is sync'd with this code; it shouldn't be a hassle.

Thanks for reading.
Let me know how it all worked out in the comments below!

Comments

Popular posts from this blog

ES Index - S3 Snapshot & Restoration:

The question is.. What brings you here? Fed up with all the searches on how to back-up and restore specific indices? 

Fear not, for your search quest ends here.!

After going through a dozens of tiny gists and manual pages, here it is.. We've done all the heavy-lifting for you.



The following tutorial was tested on elasticsearch V5.4.0

And before we proceed, remember:

Do's:

Make sure that the elasticsearch version of the backed-up cluster/node <= Restoring Cluster's version.

Dont's:

Unless it's highly necessary;

curl -XDELETE 'http://localhost:9200/nameOfTheIndex

      - deletes a specific index

Especially not, when you are drunk!:

curl -XDELETE 'http://localhost:9200/_all

      - deletes all indexes (This is where the drunk part comes in..!!)



Step1:Install S3 plugin Support:        sudo bin/elasticsearch-plugin install repository-s3
                                  (or)
sudo /usr/share/elasticsearch/bin/elasticsearch-plugin install repository-s3

Depends on w…

The No-BS guide to AutoComplete and FuzzySearch in Elasticsearch

Before we begin.. Here are a few basics.Analyzer: An analyzer does the analysis or splits the indexed phrase/word into tokens/terms upon which the search is performed with much ease.

An analyzer is made up of tokenizer and filters.

There are numerous analyzers in elasticsearch, by default;
here, we use some of the custom analyzers tweaked in order to meet our requirements.
Filter: A filter removes/filters keywords from the query. Useful when we need to remove false positives from the search results based on the inputs.

We will be using a stop word filter to remove the specified keywords in the search configuration from the query text.
Tokenizer: The input string needs to be split, in order  to be searched against the indexed documents. We are about to use ngram here, which splits the query text into sizeable terms.
Mappings: The created analyzer need to be mapped to a fieldname, for it to be efficiently used while querying.
T'is time!!! Now that we have covered the basics, t'is t…